[image:]

Executive Summary
This booklet provides a comprehensive and practical guide to mastering PowerShell scripting for IT professionals, analysts, and system administrators. It is designed to serve both as a learning resource and a reference manual, covering foundational concepts, advanced techniques, and real-world applications.
Purpose and Scope
PowerShell is a powerful, object-oriented scripting language built on the .NET framework, designed for automating administrative tasks across Windows, Linux, and macOS environments. This booklet equips readers with the skills to write efficient, secure, and scalable scripts for system management, data processing, reporting, and integration with external applications such as Excel via COM automation.

Key Topics Covered
· Cmdlet Fundamentals: Understanding built-in commands, syntax, and pipeline processing.
· Logic and Flow Control: Implementing conditional statements, loops, and decision structures.
· Scripting Techniques: Structuring scripts with parameters, functions, and modular design.
· COM Automation: Building and updating Excel workbooks programmatically with precision.
· Error Handling and Debugging: Using try/catch, $Error, and diagnostic tools to build resilient scripts.
· Object and Data Management: Working with arrays, hash tables, custom objects, and formats like CSV, JSON, and XML.
· Security and Credential Management: Safely handling credentials, signing scripts, and enforcing execution policies.
· Performance Optimization: Profiling scripts, managing memory, and reducing resource consumption.
· Real-World Examples: Practical scripts for reporting, monitoring, Active Directory, and remote management.
· Troubleshooting: FAQs, common errors, and diagnostic strategies for resolving issues.

Value to Readers
By following the structured chapters and examples, readers will:
· Gain a deep understanding of PowerShell’s capabilities
· Learn to automate complex tasks with confidence
· Improve script performance and maintainability
· Enhance security and compliance in scripting practices
· Build a toolkit of reusable scripts for enterprise environments

Next Steps
Readers are encouraged to:
· Explore PowerShell 7+ features and modules
· Integrate PowerShell with cloud platforms and APIs
· Continue learning through community resources and advanced topics like Desired State Configuration (DSC) and CI/CD automation

This booklet is a strategic resource for anyone looking to elevate their PowerShell proficiency and apply it to real-world IT challenges with clarity, precision, and professionalism.

PowerShell Scripting Outline – by Randy Fadler
1. Introduction to PowerShell Scripting
· Purpose and scope of PowerShell
· Differences between command-line, scripting, and programming
· Real-world use cases
2. Cmdlet Fundamentals
· What are cmdlets?
· Syntax and structure
· Discovering cmdlets (Get-Command, Get-Help)
· Cmdlet naming conventions (Verb-Noun)
· Cmdlet lifecycle and execution
3. Cmdlet Reference Section
· Categorized list of commonly used cmdlets
· Descriptions and examples
· Discovery tools (Get-Command, Get-Help, Update-Help)
· Appendix: Extended cmdlet list for reference
4. Parameters and Pipeline Processing
· Parameter types and binding
· Using the pipeline for efficient data flow
· Filtering and formatting (Where-Object, Select-Object, Format-Table)
5. Logic and Flow Control
· Conditional statements (if, switch)
· Looping constructs (for, foreach, while, do-while)
· Logical operators and expressions
6. Scripting and Coding Techniques
· Writing .ps1 scripts
· Execution policies and script security
· Script structure, commenting, and formatting
· Modular scripting with functions
7. COM Automation – Excel Workbook Processing
· Introduction to COM and Excel automation
· Creating and opening workbooks
· Writing to specific cells, rows, and columns
· Efficient data writing using ranges
· Reading from Excel
· Formatting and styling
· Saving, closing, and releasing COM objects
· Performance tips and error handling
8. Working with Objects and Data
· PowerShell’s object-oriented nature
· Creating and manipulating PSCustomObject
· Working with JSON, XML, and CSV formats
9. File System and Registry Operations
· File and folder manipulation
· Reading and writing files
· Registry access and updates
10. System Administration with PowerShell
· Managing services, processes, and scheduled tasks
· User and group management
· Remote management and PowerShell Remoting
11. Security and Credential Management
· Secure strings and credential handling
· Script signing and execution policies
· Avoiding common security pitfalls
12. Real-World Scripting Examples
· Automation scripts
· Reporting scripts
· Monitoring and alerting scripts
· Integration with other systems
13. Q&A and Troubleshooting
· Common errors and fixes
· Tips from the field
· Frequently asked questions

Table of Contents
Chapter 1: Introduction to PowerShell Scripting	10
1.1 What Is PowerShell?	10
1.2 Evolution of PowerShell	10
1.3 Why Use PowerShell?	11
1.4 PowerShell vs Other Scripting Tools	11
1.5 Core Concepts	12
1.6 Getting Started with PowerShell	12
1.7 Real-World Use Cases	13
1.8 Best Practices for Beginners	13
1.9 Summary	14
Chapter 2: Cmdlet Fundamentals	15
2.1 What Are Cmdlets?	15
2.2 Cmdlet Naming Convention	15
2.3 Discovering Cmdlets	16
2.4 Cmdlet Syntax and Structure	16
2.5 Cmdlet Input and Output	17
2.6 Using the Pipeline with Cmdlets	17
2.7 Filtering and Formatting Cmdlets	18
2.8 Commonly Used Cmdlets by Category	18
2.9 Creating Custom Cmdlets (Advanced)	19
2.10 Summary	19
Chapter 3: Parameters and Pipeline Processing	20
3.1 Introduction	20
3.2 Understanding Parameters	20
3.3 Types of Parameters	20
3.4 Common Parameters	21
3.5 Parameter Binding	21
3.6 Advanced Parameter Features	22
3.7 Introduction to the Pipeline	23
3.8 How the Pipeline Works	23
3.9 Pipeline Input Types	23
3.10 Filtering with the Pipeline	24
3.11 Formatting Output	24
3.12 Combining Parameters and Pipeline	25
3.13 Performance Considerations	25
3.14 Summary	25
Chapter 4: Logic and Flow Control	26
4.1 Introduction	26
4.2 Conditional Statements	26
4.2.1 if Statement	26
4.2.2 if-else Statement	26
4.2.3 elseif Statement	27
4.3 Comparison Operators	27
4.4 Logical Operators	27
4.5 Switch Statement	28
4.6 Looping Constructs	29
4.6.1 for Loop	29
4.6.2 foreach Loop	29
4.7 Loop Control Statements	30
4.8 Nested Logic and Looping	30
4.9 Best Practices for Logic and Flow Control	30
4.10 Real-World Examples	31
4.11 Summary	31
Chapter 5: Scripting and Coding Techniques	32
5.1 Introduction	32
5.2 What Is a PowerShell Script?	32
5.3 Creating and Running Scripts	32
5.4 Execution Policies	33
5.5 Script Structure and Layout	33
5.6 Variables and Data Types	34
5.7 Input and Output	34
5.8 Modular Scripting with Functions	35
5.9 Script Parameters	35
5.10 Commenting and Documentation	36
5.11 Script Design Best Practices	36
5.12 Real-World Script Example	36
5.13 Summary	37
Chapter 6: COM Automation – Excel Workbook Processing	38
6.1 Introduction to COM Automation	38
6.2 Creating and Launching Excel via COM	38
6.3 Writing Data to Excel	38
6.4 Reading Data from Excel	39
6.5 Formatting and Styling	40
6.10 Summary	42
Chapter 7: Error Handling and Debugging	43
7.1 Introduction	43
7.2 Types of Errors in PowerShell	43
7.3 $Error and $? Variables	43
7.4 Try/Catch/Finally Blocks	44
7.5 ErrorAction Parameter	44
7.6 ErrorVariable Parameter	45
7.7 Throw Statement	45
7.8 Debugging Techniques	45
7.10 Handling COM Errors	47
7.11 Best Practices	47
7.12 Real-World Example: Robust File Processor	47
7.13 Summary	48
Chapter 8: Working with Objects and Data	49
8.1 Introduction	49
8.2 Understanding PowerShell Objects	49
8.3 Accessing Object Properties and Methods	49
8.4 Creating Custom Objects	50
8.6 Hash Tables	50
8.8 Working with JSON	51
8.9 Working with XML	52
8.10 Object Filtering and Transformation	52
8.11 Real-World Example: Structured Report	53
8.12 Summary	53
Chapter 9: Security and Credential Management	54
9.1 Introduction	54
9.2 Execution Policies	54
9.3 Secure Credential Handling	54
9.5 Script Signing and Certificates	56
9.7 Role-Based Access and Permissions	56
9.8 Auditing and Logging	57
9.9 Secure Remote Management	57
9.10 Common Security Pitfalls	58
9.11 Real-World Example: Secure Report Generator	58
9.12 Summary	58
Chapter 10: Performance Optimization and Cost Management	59
10.1 Introduction	59
10.2 Measuring Script Performance	59
10.3 Efficient Data Handling	59
10.4 Memory Management	60
10.5 Parallel Execution	60
10.6 Script Profiling and Bottleneck Detection	61
10.7 Cost Management in Cloud Automation	61
10.8 Logging and Diagnostics for Optimization	61
10.9 Best Practices for Performance and Cost Efficiency	62
10.10 Real-World Example: Optimized Report Generator	62
10.11 Summary	63
Chapter 11: Real-World Scripting Examples	64
11.1 Introduction	64
11.2 Example 1: System Health Report Generator	64
11.3 Example 2: Excel Report Builder via COM	64
11.4 Example 3: Active Directory User Audit	65
11.5 Example 4: Scheduled Task Monitor	66
11.6 Example 5: Secure Credential-Based Remote Command	66
11.7 Example 6: Log File Analyzer	67
11.8 Example 7: Disk Space Alert System	67
11.9 Summary	68
Chapter 12: Q&A and Troubleshooting	69
12.1 Introduction	69
12.2 Frequently Asked Questions (FAQs)	69
12.3 Common Errors and Fixes	70
12.4 Troubleshooting Techniques	71
12.5 Diagnostic Tools	72
12.6 Real-World Troubleshooting Scenarios	72
12.7 Summary	73
Chapter 13: Booklet Wrap-Up and Final Thoughts	74
13.1 Introduction	74
13.2 Recap of Key Concepts	74
13.3 Best Practices Summary	75
13.4 Suggested Next Steps	75
13.5 Resources for Continued Learning	76
13.6 Final Thoughts	76
Appendix A: PowerShell Cmdlet Reference	77
General Discovery and Help	77
Scripting and Execution	77
File and Folder Management	77
Process and Service Management	78
Data Handling and Reporting	78
Module Management	78
Registry Management	78
System Information	78
User and Session Management	79
Security and Permissions	79
Automation and Scheduling	79
Debugging and Miscellaneous	79

[bookmark: _Toc212630744]Chapter 1: Introduction to PowerShell Scripting

[bookmark: _Toc212630745]1.1 What Is PowerShell?
PowerShell is a powerful, object-oriented command-line shell and scripting language developed by Microsoft. It is built on the .NET framework (and later .NET Core for PowerShell Core and PowerShell 7+) and is designed to automate administrative tasks across local and remote Windows systems, as well as Linux and macOS environments.
Unlike traditional shells that process text streams, PowerShell processes .NET objects, allowing for more precise and flexible manipulation of data.
Key Characteristics:
· Object-based: Outputs structured objects, not plain text.
· Extensible: Supports custom modules and cmdlets.
· Integrated: Deeply embedded in Windows environments.
· Cross-platform: PowerShell Core and PowerShell 7+ run on Windows, Linux, and macOS.

[bookmark: _Toc212630746]1.2 Evolution of PowerShell
	Version
	Release Year
	Key Features

	PowerShell 1.0
	2006
	Basic cmdlets, scripting support

	PowerShell 2.0
	2009
	Remoting, background jobs, modules

	PowerShell 3.0
	2012
	Workflow support, improved ISE

	PowerShell 4.0
	2013
	Desired State Configuration (DSC)

	PowerShell 5.0/5.1
	2016
	Classes, package management, OneGet

	PowerShell Core (6.x)
	2018
	Cross-platform, built on .NET Core

	PowerShell 7+
	2020+
	Unified platform, performance improvements, compatibility with Windows PowerShell modules

[bookmark: _Toc212630747]1.3 Why Use PowerShell?
PowerShell is designed for automation, configuration management, and system administration. It is widely used by IT professionals, DevOps engineers, and system administrators for tasks such as:
· Managing Active Directory users and groups
· Automating software deployments
· Generating reports (e.g., Excel via COM)
· Monitoring system health and performance
· Interfacing with cloud platforms (Azure, AWS)
· Managing file systems and registries
· Creating scheduled tasks and background jobs

[bookmark: _Toc212630748]1.4 PowerShell vs Other Scripting Tools
	Feature
	PowerShell
	Bash
	CMD
	Python

	Object-oriented
	✅
	❌
	❌
	✅

	Windows integration
	✅
	❌
	✅
	✅

	Cross-platform
	✅ (v6+)
	✅
	❌
	✅

	Rich cmdlet ecosystem
	✅
	❌
	❌
	N/A

	COM/Windows API access
	✅
	❌
	✅
	✅

	Pipeline support
	✅
	✅
	❌
	✅ (via generators)

PowerShell’s ability to work with structured objects and its deep integration with Windows make it uniquely suited for administrative tasks.

[bookmark: _Toc212630749]1.5 Core Concepts
Cmdlets
Cmdlets are lightweight commands built into PowerShell. They follow a Verb-Noun naming convention (e.g., Get-Process, Set-Item).
Pipeline
The pipeline (|) allows you to pass the output of one cmdlet as input to another:
PowerShell
Get-Process | Where-Object {$_.CPU -gt 100}

Objects
PowerShell outputs .NET objects, which can be inspected and manipulated:
PowerShell
$service = Get-Service
$service[0].Status
Show more lines
Scripting
Scripts are saved as .ps1 files and can include logic, functions, and error handling.

[bookmark: _Toc212630750]1.6 Getting Started with PowerShell
Launching PowerShell
· Windows PowerShell: Built into Windows
· PowerShell 7+: Downloadable from GitHub or Microsoft Store
· PowerShell ISE: Integrated Scripting Environment (Windows only)
· Visual Studio Code: Recommended editor with PowerShell extension
Basic Commands
PowerShell
Get-Process
Get-Service
Get-Help Get-Process

Execution Policy
To run scripts, you may need to adjust the execution policy:
PowerShell
Set-ExecutionPolicy RemoteSigned -Scope CurrentUser
Show more lines

[bookmark: _Toc212630751]1.7 Real-World Use Cases
Automation
· Daily report generation
· Scheduled backups
· Log file analysis
System Management
· Service monitoring
· Disk space alerts
· Registry updates
COM Automation
· Excel workbook creation and updates
· Word document manipulation
· Outlook email automation
Cloud and DevOps
· Azure resource management
· CI/CD pipeline scripting
· Infrastructure as code (IaC)

[bookmark: _Toc212630752]1.8 Best Practices for Beginners
· Use Get-Help frequently to learn cmdlet syntax.
· Start with small scripts and build incrementally.
· Use comments (#) to document your code.
· Test scripts in a safe environment before deploying.
· Learn to use the pipeline effectively for clean, readable code.

[bookmark: _Toc212630753]1.9 Summary
PowerShell is a robust and versatile tool for IT professionals. Its object-oriented nature, rich cmdlet ecosystem, and deep integration with Windows make it ideal for automating administrative tasks. This booklet will guide you through cmdlets, scripting logic, COM automation, and real-world examples to help you become proficient in PowerShell scripting.

[bookmark: _Toc212630754]Chapter 2: Cmdlet Fundamentals

[bookmark: _Toc212630755]2.1 What Are Cmdlets?
Cmdlets (pronounced command-lets) are the foundational building blocks of PowerShell. They are lightweight, single-function commands built into the PowerShell environment. Unlike traditional shell commands, cmdlets are written in C# and compiled into .NET classes, allowing them to return rich, structured objects rather than plain text.
Key Characteristics:
· Verb-Noun naming convention (e.g., Get-Process, Set-Item)
· Consistent syntax across all cmdlets
· Pipeline compatibility for chaining operations
· Parameter support for flexible input
· Object output for advanced manipulation

[bookmark: _Toc212630756]2.2 Cmdlet Naming Convention
PowerShell enforces a standardized naming convention to improve readability and predictability:
Format: Verb-Noun
· Verb: Action to perform (Get, Set, New, Remove, Start, Stop, etc.)
· Noun: Target of the action (Process, Service, Item, User, etc.)
Examples:
PowerShell
Get-Process
Set-ExecutionPolicy
New-Item
Remove-Item
Start-Service

PowerShell includes a predefined list of approved verbs to maintain consistency. You can view them using:
PowerShell
Get-Verb

[bookmark: _Toc212630757]2.3 Discovering Cmdlets
PowerShell provides several tools to explore available cmdlets:
Get-Command
Lists all available cmdlets, functions, aliases, and scripts:
PowerShell
Get-Command
Get-Command -CommandType Cmdlet
Get-Command -Name *Service*

Get-Help
Displays detailed help for any cmdlet:
PowerShell
Get-Help Get-Process
Get-Help Get-Process -Examples
Get-Help Get-Process -Full
Show more lines
Update-Help
Downloads the latest help files from Microsoft:
PowerShell
Update-Help
Show more lines

[bookmark: _Toc212630758]2.4 Cmdlet Syntax and Structure
Basic Syntax:
PowerShell
Cmdlet-Name -ParameterName ParameterValue
Show more lines
Example:
PowerShell
Get-Service -Name "Spooler"

Common Parameters:
· -Verbose: Displays detailed output
· -ErrorAction: Controls error handling (Continue, Stop, SilentlyContinue)
· -WhatIf: Simulates the command without executing
· -Confirm: Prompts for confirmation before execution

[bookmark: _Toc212630759]2.5 Cmdlet Input and Output
Cmdlets accept input via:
· Direct parameters
· Pipeline input
They return output as .NET objects, which can be inspected and manipulated.
Example:
PowerShell
$services = Get-Service
$services[0] | Get-Member
Show more lines
This reveals the properties and methods of the returned object.

[bookmark: _Toc212630760]2.6 Using the Pipeline with Cmdlets
The pipeline (|) allows chaining cmdlets together, passing output from one to the next.
Example:
PowerShell
Get-Process | Where-Object {$_.CPU -gt 100} | Sort-Object CPU -Descending
Show more lines
This retrieves processes using more than 100 CPU units and sorts them in descending order.

[bookmark: _Toc212630761]2.7 Filtering and Formatting Cmdlets
Filtering:
· Where-Object: Filters objects based on conditions
· Select-Object: Selects specific properties
Formatting:
· Format-Table: Displays output in table format
· Format-List: Displays output in list format
Example:
PowerShell
Get-Service | Where-Object {$_.Status -eq "Running"} | Format-Table Name, Status

[bookmark: _Toc212630762]2.8 Commonly Used Cmdlets by Category
System and Process Management
· Get-Process, Stop-Process, Start-Process
· Get-Service, Start-Service, Stop-Service, Restart-Service
File System
· Get-Item, Set-Item, New-Item, Remove-Item, Copy-Item, Move-Item
User Interaction
· Read-Host, Write-Host, Write-Output
Data Export and Conversion
· Export-Csv, ConvertTo-Json, ConvertFrom-Json
Security and Policy
· Get-Credential, Set-ExecutionPolicy, Get-Acl, Set-Acl
Environment and Variables
· Get-Variable, Set-Variable, Clear-Variable
· Get-ChildItem, Get-Location, Set-Location

[bookmark: _Toc212630763]2.9 Creating Custom Cmdlets (Advanced)
While not required for most users, advanced scripters can create custom cmdlets using:
· Functions with CmdletBinding
· C# classes compiled into modules
Example:
PowerShell
function Get-CustomGreeting {
[CmdletBinding()]
param([string]$Name)
Write-Output "Hello, $Name!"
}

[bookmark: _Toc212630764]2.10 Summary
Cmdlets are the heart of PowerShell. Understanding their structure, naming conventions, and how to use them effectively—especially with the pipeline—will empower you to write clean, efficient, and powerful scripts. The next chapter will build on this foundation by exploring how to use parameters and pipelines to manipulate data dynamically.

[bookmark: _Toc212630765]Chapter 3: Parameters and Pipeline Processing

[bookmark: _Toc212630766]3.1 Introduction
PowerShell’s power lies not only in its cmdlets but in how those cmdlets accept input and pass output. This chapter dives deep into parameters—the customizable inputs to cmdlets—and the pipeline, which allows seamless chaining of commands. Mastering these concepts is essential for writing efficient, readable, and scalable scripts.

[bookmark: _Toc212630767]3.2 Understanding Parameters
What Are Parameters?
Parameters are named inputs that modify the behavior of a cmdlet. They allow you to specify exactly what you want the cmdlet to do.
Parameter Syntax
PowerShell
Cmdlet-Name -ParameterName ParameterValue

Example:
PowerShell
Get-Service -Name "Spooler"

Here, -Name is the parameter, and "Spooler" is the value passed to it.

[bookmark: _Toc212630768]3.3 Types of Parameters
Named Parameters
Explicitly specify the parameter name:
PowerShell
Get-Process -Name "notepad"

Positional Parameters
Omit the parameter name if the position is known:
PowerShell
Get-Process "notepad"

Switch Parameters
Boolean flags that toggle behavior:
PowerShell
Get-Help Get-Process -Detailed

Mandatory vs Optional Parameters
Some parameters are required for the cmdlet to run; others are optional and modify behavior.
Parameter Sets
Cmdlets may support multiple parameter sets—mutually exclusive combinations of parameters.

[bookmark: _Toc212630769]3.4 Common Parameters
These are built into most cmdlets via the CmdletBinding attribute:
	Parameter
	Description

	-Verbose
	Displays detailed operation messages

	-Debug
	Shows debugging information

	-ErrorAction
	Controls error handling (Continue, Stop, SilentlyContinue, Inquire)

	-ErrorVariable
	Stores error messages in a variable

	-OutVariable
	Stores output in a variable

	-OutBuffer
	Controls buffering of output

	-WhatIf
	Simulates the command without executing

	-Confirm
	Prompts for confirmation before execution

Example:
PowerShell
Remove-Item "C:\Temp\file.txt" -WhatIf

[bookmark: _Toc212630770]3.5 Parameter Binding
PowerShell automatically matches input values to parameters using:
· Name binding: Matches by parameter name
· Position binding: Matches by order
· Type binding: Matches by expected data type
Example:
PowerShell
function Test-Binding {
param([string]$Name, [int]$Age)
Write-Output "$Name is $Age years old."
}

Test-Binding -Name "Randy" -Age 45

[bookmark: _Toc212630771]3.6 Advanced Parameter Features
Validation Attributes
Ensure input meets criteria:
PowerShell
param(
[ValidateRange(1,100)]
[int]$Score
)

Default Values
Set fallback values:
PowerShell
param([string]$User = "Guest")

Parameter Aliases
Provide alternate names:
PowerShell
param([Alias("U")] [string]$User)

Dynamic Parameters
Generated at runtime based on context (advanced topic, often used in modules).

[bookmark: _Toc212630772]3.7 Introduction to the Pipeline
The pipeline (|) is one of PowerShell’s most powerful features. It allows you to pass the output of one cmdlet directly into another.
Example:
PowerShell
Get-Process | Where-Object {$_.CPU -gt 100}

Here, Get-Process outputs a list of processes, which is filtered by Where-Object.

[bookmark: _Toc212630773]3.8 How the Pipeline Works
Step-by-Step Flow:
1. Cmdlet A produces output (usually objects).
2. Cmdlet B receives each object one at a time.
3. Cmdlet B processes the object and passes it on (or not).
Efficiency Tip:
Avoid unnecessary loops by using pipeline-friendly cmdlets.

[bookmark: _Toc212630774]3.9 Pipeline Input Types
ByValue
Matches the type of the object passed in:
PowerShell
Stop-Process -Id (Get-Process -Name "notepad").Id

ByPropertyName
Matches object properties to parameter names:
PowerShell
Get-Process | Stop-Process

Here, Stop-Process uses the Id property from Get-Process.

[bookmark: _Toc212630775]3.10 Filtering with the Pipeline
Where-Object
Filters objects based on conditions:
PowerShell
Get-Service | Where-Object {$_.Status -eq "Running"}

Select-Object
Chooses specific properties:
PowerShell
Get-Process | Select-Object Name, CPU

Sort-Object
Sorts output:
PowerShell
Get-Process | Sort-Object CPU -Descending

ForEach-Object
Performs actions on each item:
PowerShell
Get-Process | ForEach-Object { "$($_.Name) is using $($_.CPU) CPU" }

[bookmark: _Toc212630776]3.11 Formatting Output
Format-Table
Displays output in tabular form:
PowerShell
Get-Service | Format-Table Name, Status

Format-List
Displays output in list form:
PowerShell
Get-Service | Format-List *

[bookmark: _Toc212630777]3.12 Combining Parameters and Pipeline
You can mix parameters and pipeline input for powerful scripts:
PowerShell
Get-ChildItem "C:\Logs" | Where-Object {$_.Length -gt 1MB} | Remove-Item -WhatIf

This finds large files and simulates their deletion.

[bookmark: _Toc212630778]3.13 Performance Considerations
· Use Select-Object early to reduce memory usage.
· Avoid unnecessary loops—use pipeline-friendly cmdlets.
· Use Measure-Command to benchmark performance:
PowerShell
Measure-Command { Get-Process | Sort-Object CPU }

[bookmark: _Toc212630779]3.14 Summary
Understanding parameters and mastering the pipeline are essential skills for any PowerShell scripter. Parameters allow precise control over cmdlet behavior, while the pipeline enables elegant, readable, and efficient data processing. These tools form the backbone of real-world PowerShell automation.

[bookmark: _Toc212630780]Chapter 4: Logic and Flow Control

[bookmark: _Toc212630781]4.1 Introduction
Logic and flow control are the backbone of any scripting language. In PowerShell, they allow you to make decisions, repeat actions, and control the execution path of your scripts. This chapter explores conditional statements, loops, logical operators, and best practices for writing clean, efficient control logic.

[bookmark: _Toc212630782]4.2 Conditional Statements
Conditional statements evaluate expressions and execute code based on whether conditions are true or false.
[bookmark: _Toc212630783]4.2.1 if Statement
The if statement is the most basic conditional structure.
Syntax:
PowerShell
if (<condition>) {
Code to execute if condition is true
}

Example:
PowerShell
$cpuUsage = 85
if ($cpuUsage -gt 80) {
Write-Host "High CPU usage detected!"
}
[bookmark: _Toc212630784]4.2.2 if-else Statement
Provides an alternative path if the condition is false.
PowerShell
if ($cpuUsage -gt 80) {
Write-Host "High CPU usage detected!"
} else {
Write-Host "CPU usage is normal."
}

[bookmark: _Toc212630785]4.2.3 elseif Statement
Allows multiple conditions to be evaluated sequentially.
PowerShell
if ($cpuUsage -gt 90) {
Write-Host "Critical CPU usage!"
} elseif ($cpuUsage -gt 80) {
Write-Host "High CPU usage!"
} else {
Write-Host "CPU usage is acceptable."
}

[bookmark: _Toc212630786]4.3 Comparison Operators
Used to compare values in conditions.
	Operator
	Description

	-eq
	Equal to

	-ne
	Not equal to

	-gt
	Greater than

	-lt
	Less than

	-ge
	Greater than or equal to

	-le
	Less than or equal to

Example:
PowerShell
if ($diskSpace -lt 10) {
Write-Host "Low disk space warning!"
}

[bookmark: _Toc212630787]4.4 Logical Operators
Used to combine multiple conditions.
	Operator
	Description

	-and
	Both conditions must be true

	-or
	At least one condition must be true

	-not
	Negates a condition

	!
	Alias for -not

Example:
PowerShell
if ($cpuUsage -gt 80 -and $memoryUsage -gt 80) {
Write-Host "System under heavy load!"
}

[bookmark: _Toc212630788]4.5 Switch Statement
The switch statement is used for multiple condition checks against a single value.
Syntax:
PowerShell
switch ($value) {
"Start" { Write-Host "Starting service..." }
"Stop" { Write-Host "Stopping service..." }
default { Write-Host "Unknown command." }
}

Advanced Switch Features:
· Wildcard matching:
PowerShell
switch -Wildcard ($input) {
"*error*" { Write-Host "Error detected" }
}

· Regular expressions:
PowerShell
switch -Regex ($input) {
"\d{3}-\d{2}-\d{4}" { Write-Host "SSN format detected" }
}

[bookmark: _Toc212630789]4.6 Looping Constructs
Loops allow you to repeat actions based on conditions or collections.
[bookmark: _Toc212630790]4.6.1 for Loop
Used when the number of iterations is known.
PowerShell
for ($i = 0; $i -lt 5; $i++) {
Write-Host "Iteration $i"
}

[bookmark: _Toc212630791]4.6.2 foreach Loop
Iterates over each item in a collection.
PowerShell
$services = Get-Service
foreach ($service in $services) {
Write-Host $service.Name
}

4.6.3 while Loop
Repeats as long as the condition is true.
PowerShell
$count = 0
while ($count -lt 3) {
Write-Host "Count is $count"
$count++
}

4.6.4 do-while Loop
Executes at least once before checking the condition.
PowerShell
$count = 0
do {
Write-Host "Count is $count"
$count++
} while ($count -lt 3)

[bookmark: _Toc212630792]4.7 Loop Control Statements
break
Exits the loop immediately.
PowerShell
foreach ($item in $list) {
if ($item -eq "Stop") { break }
}

continue
Skips the current iteration and moves to the next.
PowerShell
foreach ($item in $list) {
if ($item -eq "Skip") { continue }
Write-Host $item
}

[bookmark: _Toc212630793]4.8 Nested Logic and Looping
PowerShell supports nesting of if, switch, and loops.
Example:
PowerShell
foreach ($user in $users) {
 if ($user.IsActive) {
 if ($user.Role -eq "Admin") {
 Write-Host "$($user.Name) is an active admin."
 }
 }
}

[bookmark: _Toc212630794]4.9 Best Practices for Logic and Flow Control
· Keep conditions simple: Break complex logic into smaller functions.
· Use meaningful variable names: Improves readability.
· Avoid deeply nested logic: Refactor into functions or switch statements.
· Use switch for multiple discrete values: Cleaner than multiple if-elseif blocks.
· Comment your logic: Explain why decisions are made.

[bookmark: _Toc212630795]4.10 Real-World Examples
Example 1: Service Monitor
PowerShell
$services = Get-Service
foreach ($service in $services) {
if ($service.Status -ne "Running") {
Write-Host "$($service.Name) is not running!"
}
}

Example 2: Disk Space Alert
PowerShell
$drives = Get-PSDrive -PSProvider FileSystem
foreach ($drive in $drives) {
if ($drive.Free -lt 1GB) {
Write-Host "Drive $($drive.Name) is low on space!"
}
}

[bookmark: _Toc212630796]4.11 Summary
Logic and flow control are essential for building intelligent, responsive scripts. PowerShell provides a rich set of tools—from simple if statements to complex switch and loop constructs—that allow you to control execution paths and automate decision-making. Mastering these tools will enable you to write scripts that are both powerful and maintainable.

[bookmark: _Toc212630797]Chapter 5: Scripting and Coding Techniques

[bookmark: _Toc212630798]5.1 Introduction
PowerShell scripting transforms one-off commands into reusable, scalable automation solutions. This chapter explores how to write, structure, and manage PowerShell scripts effectively. You'll learn best practices for script design, modularization, commenting, and execution, along with techniques for building robust, maintainable code.

[bookmark: _Toc212630799]5.2 What Is a PowerShell Script?
A PowerShell script is a plain-text file with a .ps1 extension containing a sequence of PowerShell commands, logic, and functions. Scripts allow you to:
· Automate repetitive tasks
· Perform complex operations
· Accept input and produce output
· Handle errors and exceptions
· Interact with external systems (e.g., Excel via COM)

[bookmark: _Toc212630800]5.3 Creating and Running Scripts
Creating a Script File
Use any text editor (e.g., Notepad, VS Code, PowerShell ISE) to create a .ps1 file.
PowerShell
Save as HelloWorld.ps1
Write-Host "Hello, PowerShell!"

Running a Script
From the PowerShell console:
PowerShell
.\HelloWorld.ps1

If the script is in a different directory:
PowerShell
& "C:\Scripts\HelloWorld.ps1"

Show more lines

[bookmark: _Toc212630801]5.4 Execution Policies
PowerShell includes security controls to prevent unauthorized script execution.
Common Policies:
· Restricted: No scripts allowed
· AllSigned: Only signed scripts allowed
· RemoteSigned: Local scripts allowed; remote must be signed
· Unrestricted: All scripts allowed (with warnings)
Set Execution Policy:
PowerShell
Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

Use Get-ExecutionPolicy to check current settings.

[bookmark: _Toc212630802]5.5 Script Structure and Layout
Recommended Layout:
PowerShell
<#
.SYNOPSIS
Brief description of the script
.DESCRIPTION
Detailed explanation of functionality
.PARAMETER <Name>
Description of each parameter
.EXAMPLE
Example usage
.NOTES
Author, version, date
#>

Import modules
Define parameters
Main logic
Functions
Example Header Block:
PowerShell
<#
.SYNOPSIS
Generates a system health report
.DESCRIPTION
Collects CPU, memory, and disk usage and exports to CSV
.EXAMPLE
.\HealthReport.ps1 -OutputPath "C:\Reports"
.NOTES
Author: Randy Fadler
Version: 1.0
Date: 2025-10-29
#>

[bookmark: _Toc212630803]5.6 Variables and Data Types
Declaring Variables:
PowerShell
$Name = "Randy"
$Age = 45

Common Data Types:
· [string], [int], [bool], [datetime], [array], [hashtable]
Type Conversion:
PowerShell
[int]$value = "123"

Show more lines

[bookmark: _Toc212630804]5.7 Input and Output
User Input:
PowerShell
$name = Read-Host "Enter your name"

Output:
PowerShell
Write-Host "Hello, $name"
Write-Output "This is pipeline-friendly output"

[bookmark: _Toc212630805]5.8 Modular Scripting with Functions
Functions encapsulate logic for reuse and clarity.
Basic Function:
PowerShell
function Get-Greeting {
param([string]$Name)
return "Hello, $Name!"
}

Advanced Function with CmdletBinding:
PowerShell
function Get-Report {
[CmdletBinding()]
param(
[Parameter(Mandatory)]
[string]$Path
)
Logic here
}

Calling a Function:
PowerShell
Get-Greeting -Name "Randy"

[bookmark: _Toc212630806]5.9 Script Parameters
Use param() to define script-level parameters.
Example:
PowerShell
param(
[string]$OutputPath = "C:\Reports",
[switch]$Verbose
)

Using Parameters:
PowerShell
.\HealthReport.ps1 -OutputPath "D:\Logs" -Verbose

[bookmark: _Toc212630807]5.10 Commenting and Documentation
Single-Line Comments:
PowerShell
This is a comment

Block Comments:
PowerShell
<#
This is a multi-line comment
Used for documentation
#>

Best Practices:
· Comment purpose, not just mechanics
· Use .SYNOPSIS blocks for functions and scripts
· Document parameters and expected input/output

[bookmark: _Toc212630808]5.11 Script Design Best Practices
· Modularize: Break large scripts into functions
· Validate input: Use [Validate*] attributes
· Use error handling: Try/Catch blocks
· Avoid hardcoding: Use parameters and config files
· Log actions: Write to log files or event logs
· Use consistent naming: CamelCase or PascalCase for variables and functions

[bookmark: _Toc212630809]5.12 Real-World Script Example
System Health Report Script:
PowerShell
<#
.SYNOPSIS
Generates a system health report
#>

param(
[string]$OutputPath = "C:\Reports"
)

$cpu = Get-WmiObject Win32_Processor | Select-Object LoadPercentage
$memory = Get-WmiObject Win32_OperatingSystem | Select-Object FreePhysicalMemory
$disk = Get-WmiObject Win32_LogicalDisk -Filter "DriveType=3" | Select-Object DeviceID, FreeSpace
$report = [PSCustomObject]@{
CPU_Load = $cpu.LoadPercentage
Free_Memory_MB = [math]::Round($memory.FreePhysicalMemory / 1024, 2)
Disk_Free_GB = [math]::Round($disk.FreeSpace / 1GB, 2)
}

$report | Export-Csv "$OutputPath\HealthReport.csv" -NoTypeInformation

[bookmark: _Toc212630810]5.13 Summary
PowerShell scripting is more than writing commands—it’s about building maintainable, scalable automation solutions. By mastering script structure, parameters, functions, and best practices, you’ll be equipped to create powerful tools for system administration, reporting, and integration.

[bookmark: _Toc212630811]Chapter 6: COM Automation – Excel Workbook Processing

[bookmark: _Toc212630812]6.1 Introduction to COM Automation
COM (Component Object Model) is a Microsoft technology that allows PowerShell to interact with applications like Excel, Word, Outlook, and Internet Explorer. Through COM, you can automate tasks such as creating workbooks, writing data to cells, formatting sheets, and saving reports—all without opening Excel manually.
PowerShell’s ability to use COM objects makes it a powerful tool for generating dynamic reports and integrating with legacy systems.

[bookmark: _Toc212630813]6.2 Creating and Launching Excel via COM
Basic Initialization
PowerShell
$Excel = New-Object -ComObject Excel.Application
$Excel.Visible = $true # Optional: show Excel window

Creating a New Workbook
PowerShell
$Workbook = $Excel.Workbooks.Add()
$Worksheet = $Workbook.Worksheets.Item(1)

Opening an Existing Workbook
PowerShell
$Workbook = $Excel.Workbooks.Open("C:\Reports\Report.xlsx")
$Worksheet = $Workbook.Worksheets.Item("Sheet1")

[bookmark: _Toc212630814]6.3 Writing Data to Excel
Writing to a Single Cell
PowerShell
$Worksheet.Cells.Item(1, 1).Value2 = "Hello, Excel!"

Writing to a Row
PowerShell
$data = @("Name", "Age", "Department")
for ($i = 0; $i -lt $data.Count; $i++) {
$Worksheet.Cells.Item(1, $i + 1).Value2 = $data[$i]
}

Writing to a Column
PowerShell
$names = @("Alice", "Bob", "Charlie")
for ($i = 0; $i -lt $names.Count; $i++) {
$Worksheet.Cells.Item($i + 2, 1).Value2 = $names[$i]
}

Writing a 2D Array to a Range
PowerShell
$Worksheet.Range("A2:C2").Value2 = @("One", "Two", "Three")

[bookmark: _Toc212630815]6.4 Reading Data from Excel
Reading a Single Cell
PowerShell
$value = $Worksheet.Cells.Item(1, 1).Value2

Reading a Range into an Array
PowerShell
$data = $Worksheet.Range("A1:C1").Value2

Looping Through Rows and Columns
PowerShell
for ($row = 1; $row -le 10; $row++) {
for ($col = 1; $col -le 5; $col++) {
$value = $Worksheet.Cells.Item($row, $col).Value2
Write-Host "Row $row, Col $col: $value"
}
}

[bookmark: _Toc212630816]6.5 Formatting and Styling
Font and Color
PowerShell
$cell = $Worksheet.Cells.Item(1, 1)
$cell.Font.Bold = $true
$cell.Font.Color = 255 # Red

AutoFit Columns
PowerShell
$Worksheet.Columns.AutoFit()

Borders
PowerShell
$range = $Worksheet.Range("A1:C1")
$range.Borders.LineStyle = 1 # Continuous line

6.6 Saving and Closing Workbooks
Save As
PowerShell
$Workbook.SaveAs("C:\Reports\FinalReport.xlsx")

Close Workbook and Quit Excel
PowerShell
$Workbook.Close($false)
$Excel.Quit()

Release COM Objects
PowerShell
[System.Runtime.Interopservices.Marshal]::ReleaseComObject($Worksheet) | Out-Null
[System.Runtime.Interopservices.Marshal]::ReleaseComObject($Workbook) | Out-Null
[System.Runtime.Interopservices.Marshal]::ReleaseComObject($Excel) | Out-Null
[GC]::Collect()
[GC]::WaitForPendingFinalizers()

6.7 Writing to Specific Rows and Columns Efficiently
Dynamic Row/Column Targeting
PowerShell
$row = 5
$col = 3
$Worksheet.Cells.Item($row, $col).Value2 = "Targeted Cell"

Looping with DataTable or SQL Results
PowerShell
Assume $results is a collection of objects from SQL
$row = 2
foreach ($record in $results) {
$Worksheet.Cells.Item($row, 1).Value2 = $record.Name
$Worksheet.Cells.Item($row, 2).Value2 = $record.Age
$Worksheet.Cells.Item($row, 3).Value2 = $record.Department
$row++
}

6.8 Error Handling and Performance Tips
Try/Catch Block
PowerShell
try {
$Workbook = $Excel.Workbooks.Open("C:\InvalidPath.xlsx")
} catch {
Write-Host "Error opening workbook: $_"
}

Performance Tips
· Use Value2 instead of Value for faster access
· Minimize screen updates: $Excel.ScreenUpdating = $false
· Avoid excessive COM calls—batch data into arrays or ranges
· Always release COM objects to prevent memory leaks

6.9 Real-World Example: Report Generator
PowerShell
$Excel = New-Object -ComObject Excel.Application
$Excel.Visible = $false
$Workbook = $Excel.Workbooks.Add()
$Sheet = $Workbook.Worksheets.Item(1)

Header
$Sheet.Cells.Item(1,1).Value2 = "Name"
$Sheet.Cells.Item(1,2).Value2 = "Score"

Data
$data = @(
@{Name="Alice"; Score=95},
@{Name="Bob"; Score=88},
@{Name="Charlie"; Score=92}
)

$row = 2
foreach ($entry in $data) {
$Sheet.Cells.Item($row,1).Value2 = $entry.Name
$Sheet.Cells.Item($row,2).Value2 = $entry.Score
$row++
}

Save and cleanup
$Workbook.SaveAs("C:\Reports\StudentScores.xlsx")
$Workbook.Close($false)
$Excel.Quit()
[System.Runtime.Interopservices.Marshal]::ReleaseComObject($Excel)

[bookmark: _Toc212630817]6.10 Summary
COM automation with PowerShell unlocks powerful capabilities for Excel reporting and data manipulation. Whether you're building dashboards, exporting SQL results, or formatting reports, mastering COM interaction allows you to automate Excel with precision and efficiency. Always remember to manage resources carefully and structure your scripts for maintainability.

[bookmark: _Toc212630818]Chapter 7: Error Handling and Debugging

[bookmark: _Toc212630819]7.1 Introduction
Error handling and debugging are critical components of robust PowerShell scripting. Whether you're automating system tasks, processing data, or interacting with external applications like Excel via COM, your scripts must gracefully handle unexpected conditions and provide meaningful feedback. This chapter explores PowerShell’s error handling mechanisms, debugging tools, and best practices for writing resilient scripts.

[bookmark: _Toc212630820]7.2 Types of Errors in PowerShell
PowerShell errors fall into several categories:
Terminating Errors
· Stop script execution immediately.
· Examples: file not found, access denied, COM object failure.
Non-Terminating Errors
· Allow script to continue.
· Examples: invalid input, missing properties.
Exceptions
· .NET exceptions thrown during execution.
· Can be caught using try/catch.

[bookmark: _Toc212630821]7.3 $Error and $? Variables
$Error
· Global array storing recent errors.
· $Error[0] contains the most recent error.
$?
· Boolean indicating success of the last command.
· Returns $true or $false.
Example:
PowerShell
Get-Item "C:\MissingFile.txt"
$? # False
$Error[0] # Displays error details

[bookmark: _Toc212630822]7.4 Try/Catch/Finally Blocks
PowerShell supports structured error handling using try, catch, and finally.
Syntax:
PowerShell
try {
Code that may throw an error
}
catch {
Error handling logic
}
finally {
Cleanup code (optional)
}

Example:
PowerShell
try {
$Workbook = $Excel.Workbooks.Open("C:\InvalidPath.xlsx")
}
catch {
Write-Host "Error opening workbook: $($_.Exception.Message)"
}
finally {
Write-Host "Attempted to open workbook."
}

[bookmark: _Toc212630823]7.5 ErrorAction Parameter
Most cmdlets support the -ErrorAction parameter to control error behavior.
	Value
	Description

	Continue
	Default; displays error and continues

	Stop
	Converts non-terminating error to terminating

	SilentlyContinue
	Suppresses error message

	Inquire
	Prompts user for action

Example:
PowerShell
Get-Item "C:\MissingFile.txt" -ErrorAction SilentlyContinue

[bookmark: _Toc212630824]7.6 ErrorVariable Parameter
Stores error details in a custom variable.
Example:
PowerShell
Get-Item "C:\MissingFile.txt" -ErrorVariable myError
$myError[0].Exception.Message

[bookmark: _Toc212630825]7.7 Throw Statement
Manually generates a terminating error.
Example:
PowerShell
function Validate-Input {
param([int]$Age)
if ($Age -lt 0) {
throw "Age cannot be negative."
}
}

[bookmark: _Toc212630826]7.8 Debugging Techniques
Write-Debug
Outputs debug messages when $DebugPreference is set to Continue.
PowerShell
Write-Debug "Starting script..."
$DebugPreference = "Continue"

Set-PSDebug
Enables script tracing.
PowerShell
Set-PSDebug -Trace 1

	Level
	Description

	0
	Off

	1
	Command tracing

	2
	Command + variable tracing

	3
	Command + variable + function tracing

Breakpoints in ISE or VS Code
· Set breakpoints to pause execution.
· Inspect variables and step through code.

7.9 Logging and Diagnostics
Write-Verbose
Outputs detailed messages when -Verbose is used.
Plain Text
Write-Verbose "Processing record..."

Write-Progress
Displays progress bar in console.
PowerShell
Write-Progress -Activity "Exporting Data" -PercentComplete 50

Show more lines
Logging to File
PowerShell
"[$(Get-Date)] Starting script..." | Out-File "C:\Logs\ScriptLog.txt" -Append

[bookmark: _Toc212630827]7.10 Handling COM Errors
COM automation (e.g., Excel) is prone to runtime errors. Always wrap COM calls in try/catch blocks and release objects properly.
Example:
PowerShell
try {
$Excel = New-Object -ComObject Excel.Application
$Workbook = $Excel.Workbooks.Open("C:\Invalid.xlsx")
}
catch {
Write-Host "Excel COM error: $($_.Exception.Message)"
}
finally {
$Excel.Quit()
[System.Runtime.Interopservices.Marshal]::ReleaseComObject($Excel)
}

[bookmark: _Toc212630828]7.11 Best Practices
· Use try/catch for critical operations (file I/O, COM, network).
· Log errors with timestamps and context.
· Validate input early using [Validate*] attributes.
· Use -ErrorAction Stop to catch non-terminating errors.
· Avoid silent failures unless explicitly required.
· Clean up resources in finally blocks.

[bookmark: _Toc212630829]7.12 Real-World Example: Robust File Processor
PowerShell
param([string]$FilePath)

try {
if (-not (Test-Path $FilePath)) {
throw "File not found: $FilePath"
}

$content = Get-Content $FilePath -ErrorAction Stop
Write-Host "File read successfully."
}
catch {
Write-Host "Error: $($_.Exception.Message)"
"[$(Get-Date)] Error: $($_.Exception.Message)" | Out-File "C:\Logs\ErrorLog.txt" -Append
}
finally {
Write-Host "Script execution complete."
}

[bookmark: _Toc212630830]7.13 Summary
Error handling and debugging are essential for writing professional-grade PowerShell scripts. By using structured error handling, diagnostic tools, and logging techniques, you can build scripts that are resilient, maintainable, and production-ready. Whether you're automating Excel or managing system tasks, these practices ensure your scripts behave predictably and transparently.

[bookmark: _Toc212630831]Chapter 8: Working with Objects and Data

[bookmark: _Toc212630832]8.1 Introduction
PowerShell is fundamentally object-oriented, which sets it apart from traditional shells like Bash or CMD. Instead of parsing plain text, PowerShell works with structured .NET objects, allowing you to access properties, methods, and manipulate data with precision. This chapter explores how to work with objects, create custom data structures, and handle formats like JSON, XML, and CSV.

[bookmark: _Toc212630833]8.2 Understanding PowerShell Objects
Every output in PowerShell is an object. These objects have:
· Properties: Data fields (e.g., Name, Status)
· Methods: Actions the object can perform (e.g., .ToString(), .Clone())
Inspecting Objects
PowerShell
$service = Get-Service | Select-Object -First 1
$service | Get-Member

This reveals the full structure of the object, including its type, properties, and methods.

[bookmark: _Toc212630834]8.3 Accessing Object Properties and Methods
Property Access
PowerShell
$process = Get-Process -Name "notepad"
$process.Id
$process.CPU

Method Invocation
PowerShell
$today = Get-Date
$today.ToShortDateString()

[bookmark: _Toc212630835]8.4 Creating Custom Objects
Custom objects are useful for structured output, especially in reporting.
Using PSCustomObject
PowerShell
$report = [PSCustomObject]@{
Name = "Randy"
Department = "IT"
Score = 98
}

Output as Table
PowerShell
$report | Format-Table

8.5 Arrays and Collections
Creating Arrays
PowerShell
$names = @("Alice", "Bob", "Charlie")
$names[1] # Outputs "Bob"

Looping Through Arrays
PowerShell
foreach ($name in $names) {
Write-Host "Hello, $name"
}

[bookmark: _Toc212630836]8.6 Hash Tables
Hash tables store key-value pairs.
Creating a Hash Table
PowerShell
$employee = @{
Name = "Randy"
Role = "Analyst"
Location = "Mauldin"
}

Accessing Values
PowerShell
$employee["Role"]

8.7 Working with CSV Files
CSV is a common format for data exchange.
Importing CSV
Plain Text
$data = Import-Csv "C:\Reports\Employees.csv"
$data[0].Name

Exporting CSV
PowerShell
$data | Export-Csv "C:\Reports\Output.csv" -NoTypeInformation

Creating CSV from Custom Objects
PowerShell
$records = @()
$records += [PSCustomObject]@{Name="Alice"; Score=90}
$records += [PSCustomObject]@{Name="Bob"; Score=85}
$records | Export-Csv "C:\Reports\Scores.csv" -NoTypeInformation

[bookmark: _Toc212630837]8.8 Working with JSON
JSON is widely used in APIs and configuration files.
Convert to JSON
PowerShell
$object = [PSCustomObject]@{Name="Randy"; Role="Analyst"}
$json = $object | ConvertTo-Json

Convert from JSON
PowerShell
$parsed = $json | ConvertFrom-Json
$parsed.Name

[bookmark: _Toc212630838]8.9 Working with XML
XML is common in legacy systems and configuration.
Importing XML
PowerShell
[xml]$xmlData = Get-Content "C:\Config\settings.xml"
$xmlData.Settings.Theme

Creating XML
PowerShell
$xml = New-Object System.Xml.XmlDocument
$root = $xml.CreateElement("Settings")
$theme = $xml.CreateElement("Theme")
$theme.InnerText = "Dark"
$root.AppendChild($theme)
$xml.AppendChild($root)
$xml.Save("C:\Config\settings.xml")

[bookmark: _Toc212630839]8.10 Object Filtering and Transformation
Filtering with Where-Object
PowerShell
Get-Process | Where-Object {$_.CPU -gt 100}

Selecting Properties
PowerShell
Get-Service | Select-Object Name, Status

Sorting
PowerShell
Get-Process | Sort-Object CPU -Descending

Grouping
PowerShell
Get-EventLog -LogName System -Newest 100 | Group-Object Source

[bookmark: _Toc212630840]8.11 Real-World Example: Structured Report
PowerShell
$users = @(
[PSCustomObject]@{Name="Alice"; Department="HR"; Score=88},
[PSCustomObject]@{Name="Bob"; Department="IT"; Score=92}
)

$users | Export-Csv "C:\Reports\UserScores.csv" -NoTypeInformation

[bookmark: _Toc212630841]8.12 Summary
PowerShell’s object-oriented nature makes it ideal for structured data manipulation. Whether you're working with system objects, custom reports, or external data formats like CSV, JSON, and XML, understanding how to create, access, and transform objects is essential for building powerful scripts.

[bookmark: _Toc212630842]Chapter 9: Security and Credential Management

[bookmark: _Toc212630843]9.1 Introduction
Security is a critical aspect of PowerShell scripting, especially when scripts interact with sensitive systems, user accounts, or external services. This chapter explores how PowerShell handles credentials, protects sensitive data, enforces execution policies, and supports secure scripting practices. You'll learn how to securely store and retrieve credentials, sign scripts, and avoid common security pitfalls.

[bookmark: _Toc212630844]9.2 Execution Policies
Execution policies determine how PowerShell handles script execution on a system. They are not security boundaries but help prevent accidental or unauthorized script execution.
Common Policies:
	Policy
	Description

	Restricted
	No scripts allowed

	AllSigned
	Only signed scripts allowed

	RemoteSigned
	Local scripts allowed; remote must be signed

	Unrestricted
	All scripts allowed (with warnings)

	Bypass
	No restrictions or warnings

Check Current Policy:
PowerShell
Get-ExecutionPolicy

Set Policy:
Plain Text
Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

[bookmark: _Toc212630845]9.3 Secure Credential Handling
Prompting for Credentials
PowerShell
$cred = Get-Credential

This opens a secure dialog box for username and password input.
Using Credentials
PowerShell
Invoke-Command -ComputerName "Server01" -Credential $cred -ScriptBlock { Get-Process }

9.4 Storing Credentials Securely
Convert to Secure String
PowerShell
$securePassword = ConvertTo-SecureString "MyPassword123" -AsPlainText -Force

Create Credential Object
PowerShell
$cred = New-Object System.Management.Automation.PSCredential ("UserName", $securePassword)

Export Secure String to File
PowerShell
$securePassword | ConvertFrom-SecureString | Out-File "C:\Secure\password.txt"

Import Secure String from File
PowerShell
$securePassword = Get-Content "C:\Secure\password.txt" | ConvertTo-SecureString
$cred = New-Object System.Management.Automation.PSCredential ("UserName", $securePassword)

⚠️ Note: Secure strings are encrypted using the Windows Data Protection API (DPAPI) and are only readable by the same user on the same machine.

[bookmark: _Toc212630846]9.5 Script Signing and Certificates
Why Sign Scripts?
· Ensures script integrity
· Prevents tampering
· Required by AllSigned execution policy
Create a Self-Signed Certificate
PowerShell
New-SelfSignedCertificate -CertStoreLocation Cert:\CurrentUser\My -Subject "CN=PowerShellScriptSigner"

Sign a Script
PowerShell
Set-AuthenticodeSignature -FilePath "C:\Scripts\MyScript.ps1" -Certificate $cert

Verify Signature
PowerShell
Get-AuthenticodeSignature "C:\Scripts\MyScript.ps1"

9.6 Protecting Sensitive Data
Avoid Hardcoding Passwords
Never embed plain-text passwords in scripts.
Use Environment Variables
PowerShell
$env:API_KEY = "your_api_key_here"

Use Secure Configuration Files
Store encrypted credentials or tokens in files and decrypt them at runtime.

[bookmark: _Toc212630847]9.7 Role-Based Access and Permissions
PowerShell can interact with Windows security models:
Check User Identity
PowerShell
[System.Security.Principal.WindowsIdentity]::GetCurrent().Name

Check Group Membership
PowerShell
$principal = New-Object Security.Principal.WindowsPrincipal([Security.Principal.WindowsIdentity]::GetCurrent())
$principal.IsInRole([Security.Principal.WindowsBuiltInRole]::Administrator)

[bookmark: _Toc212630848]9.8 Auditing and Logging
Log Script Actions
PowerShell
"[$(Get-Date)] Starting backup..." | Out-File "C:\Logs\BackupLog.txt" -Append

Write to Event Log
PowerShell
Write-EventLog -LogName Application -Source "PowerShellScript" -EntryType Information -EventId 1000 -Message "Script executed successfully."

[bookmark: _Toc212630849]9.9 Secure Remote Management
PowerShell Remoting uses WSMan and can be secured with HTTPS and Kerberos.
Enable Remoting
PowerShell
Enable-PSRemoting -Force

Use Secure Remoting
PowerShell
Invoke-Command -ComputerName "Server01" -Credential $cred -ScriptBlock { Get-Service }

🔐 Consider using SSH-based remoting for cross-platform scenarios.

[bookmark: _Toc212630850]9.10 Common Security Pitfalls
· ❌ Hardcoding credentials
· ❌ Using Unrestricted execution policy in production
· ❌ Failing to validate input
· ❌ Ignoring script signing
· ❌ Not releasing COM objects securely

[bookmark: _Toc212630851]9.11 Real-World Example: Secure Report Generator
PowerShell
$securePassword = Get-Content "C:\Secure\password.txt" | ConvertTo-SecureString
$cred = New-Object System.Management.Automation.PSCredential ("reportuser", $securePassword)

Invoke-Command -ComputerName "ReportServer" -Credential $cred -ScriptBlock {
Get-EventLog -LogName System -Newest 100
} | Export-Csv "C:\Reports\SystemLog.csv" -NoTypeInformation

[bookmark: _Toc212630852]9.12 Summary
Security and credential management are essential for professional PowerShell scripting. By using secure strings, credential objects, execution policies, and script signing, you can protect sensitive data and ensure your scripts are safe, auditable, and compliant with organizational policies.

[bookmark: _Toc212630853]Chapter 10: Performance Optimization and Cost Management

[bookmark: _Toc212630854]10.1 Introduction
As PowerShell scripts grow in complexity and scale—especially in enterprise environments—they can consume significant system resources and time. Optimizing performance and managing resource usage is essential for building efficient, scalable, and cost-effective automation solutions. This chapter explores techniques for improving script speed, reducing memory usage, managing execution overhead, and minimizing operational costs.

[bookmark: _Toc212630855]10.2 Measuring Script Performance
Using Measure-Command
PowerShell
Measure-Command { Get-Process | Sort-Object CPU }

Returns execution time in milliseconds.
Using Stopwatch
PowerShell
$sw = [System.Diagnostics.Stopwatch]::StartNew()

Code block
$sw.Stop()
$sw.Elapsed

Useful for measuring specific sections of code.

[bookmark: _Toc212630856]10.3 Efficient Data Handling
Avoid Unnecessary Loops
Use pipeline-friendly cmdlets instead of manual iteration.
PowerShell
Inefficient
foreach ($item in $list) {
if ($item.Status -eq "Running") { $item }
}

Efficient
$list | Where-Object {$_.Status -eq "Running"}

Use Select-Object Early
Limit properties to reduce memory usage.
PowerShell
Get-Process | Select-Object Name, CPU

Batch Data Operations
Write to Excel or CSV in bulk using ranges or arrays.

[bookmark: _Toc212630857]10.4 Memory Management
Release COM Objects
Always release Excel, Word, or Outlook COM objects to prevent memory leaks.
PowerShell
[System.Runtime.Interopservices.Marshal]::ReleaseComObject($Excel)
[GC]::Collect()
[GC]::WaitForPendingFinalizers()

Avoid Global Variables
Use local scope or functions to reduce memory footprint.

[bookmark: _Toc212630858]10.5 Parallel Execution
Using Background Jobs
PowerShell
Start-Job -ScriptBlock { Get-Process }
Get-Job | Receive-Job

Using ForEach-Object -Parallel (PowerShell 7+)
PowerShell
$servers | ForEach-Object -Parallel {
Test-Connection $_ -Count 1
}

Improves performance in multi-threaded scenarios.

[bookmark: _Toc212630859]10.6 Script Profiling and Bottleneck Detection
Profile Execution
Use logging and timestamps to identify slow sections.
PowerShell
$start = Get-Date
Code block
$end = Get-Date
$duration = $end - $start

Log Resource Usage
PowerShell
Get-Process -Id $PID | Select-Object CPU, WorkingSet

[bookmark: _Toc212630860]10.7 Cost Management in Cloud Automation
PowerShell is often used to automate cloud tasks (e.g., Azure, AWS). Inefficient scripts can lead to unnecessary costs.
Avoid Over-Provisioning
· Use tags to track resource ownership.
· Automate shutdown of unused VMs.
Monitor API Calls
· Limit frequency of polling scripts.
· Use caching where possible.
Use Cost Management APIs
PowerShell
Azure example
Get-AzConsumptionUsageDetail -StartDate "2025-10-01" -EndDate "2025-10-28"

[bookmark: _Toc212630861]10.8 Logging and Diagnostics for Optimization
Write to Log Files
PowerShell
"[$(Get-Date)] Starting task..." | Out-File "C:\Logs\ScriptLog.txt" -Append

Use Verbose Output
PowerShell
Write-Verbose "Processing record..." -Verbose

Monitor Event Logs
PowerShell
Get-EventLog -LogName Application -Newest 50

[bookmark: _Toc212630862]10.9 Best Practices for Performance and Cost Efficiency
· Use native cmdlets over custom loops.
· Limit output to necessary properties.
· Avoid unnecessary object creation.
· Use Where-Object and Select-Object early.
· Release resources (especially COM).
· Profile scripts regularly.
· Automate cleanup tasks (e.g., temp files, unused resources).
· Use cloud cost alerts and budgets.

[bookmark: _Toc212630863]10.10 Real-World Example: Optimized Report Generator
PowerShell
$sw = [System.Diagnostics.Stopwatch]::StartNew()

$data = Get-Process | Select-Object Name, CPU | Where-Object {$_.CPU -gt 100}
$data | Export-Csv "C:\Reports\HighCPU.csv" -NoTypeInformation

$sw.Stop()
Write-Host "Report generated in $($sw.Elapsed.TotalSeconds) seconds."

[bookmark: _Toc212630864]10.11 Summary
Performance optimization and cost management are essential for scalable PowerShell scripting. By profiling execution, managing memory, leveraging parallelism, and automating resource cleanup, you can build scripts that are fast, efficient, and cost-conscious—especially in cloud and enterprise environments.

[bookmark: _Toc212630865]Chapter 11: Real-World Scripting Examples

[bookmark: _Toc212630866]11.1 Introduction
This chapter showcases practical PowerShell scripts that solve real-world problems in IT environments. These examples demonstrate how to apply the concepts covered in previous chapters—cmdlets, logic, COM automation, error handling, and data manipulation—to build robust, reusable solutions. Each script includes context, purpose, structure, and best practices.

[bookmark: _Toc212630867]11.2 Example 1: System Health Report Generator
Purpose
Collects CPU, memory, and disk usage and exports the results to a CSV file.
Key Concepts
· WMI queries
· Custom objects
· CSV export
Script
PowerShell
$cpu = Get-WmiObject Win32_Processor | Select-Object -ExpandProperty LoadPercentage
$memory = Get-WmiObject Win32_OperatingSystem | Select-Object -ExpandProperty FreePhysicalMemory
$disk = Get-WmiObject Win32_LogicalDisk -Filter "DriveType=3" | Select-Object DeviceID, FreeSpace

$report = [PSCustomObject]@{
CPU_Load = $cpu
Free_Memory_MB = [math]::Round($memory / 1024, 2)
Disk_Free_GB = [math]::Round($disk.FreeSpace / 1GB, 2)
}

$report | Export-Csv "C:\Reports\SystemHealth.csv" -NoTypeInformation

[bookmark: _Toc212630868]11.3 Example 2: Excel Report Builder via COM
Purpose
Generates an Excel workbook with structured data using COM automation.
Key Concepts
· COM object creation
· Cell targeting
· Resource cleanup
Script
PowerShell
$Excel = New-Object -ComObject Excel.Application
$Excel.Visible = $false
$Workbook = $Excel.Workbooks.Add()
$Sheet = $Workbook.Worksheets.Item(1)

$Sheet.Cells.Item(1,1).Value2 = "Name"
$Sheet.Cells.Item(1,2).Value2 = "Score"

$data = @(
@{Name="Alice"; Score=95},
@{Name="Bob"; Score=88}
)

$row = 2
foreach ($entry in $data) {
$Sheet.Cells.Item($row,1).Value2 = $entry.Name
$Sheet.Cells.Item($row,2).Value2 = $entry.Score
$row++
}

$Workbook.SaveAs("C:\Reports\Scores.xlsx")
$Workbook.Close($false)
$Excel.Quit()
[System.Runtime.Interopservices.Marshal]::ReleaseComObject($Excel)

[bookmark: _Toc212630869]11.4 Example 3: Active Directory User Audit
Purpose
Lists all enabled users in Active Directory and exports their details.
Key Concepts
· AD cmdlets
· Filtering
· CSV export
Script
PowerShell
Import-Module ActiveDirectory

$users = Get-ADUser -Filter {Enabled -eq $true} -Properties Name, Department, EmailAddress
$users | Select-Object Name, Department, EmailAddress | Export-Csv "C:\Reports\ADUsers.csv" -NoTypeInformation

[bookmark: _Toc212630870]11.5 Example 4: Scheduled Task Monitor
Purpose
Checks status of scheduled tasks and logs failures.
Key Concepts
· Task Scheduler cmdlets
· Logging
· Conditional logic
Script
PowerShell
$tasks = Get-ScheduledTask | Where-Object {$_.State -ne "Ready"}

foreach ($task in $tasks) {
$log = "[$(Get-Date)] Task $($task.TaskName) is in state $($task.State)"
$log | Out-File "C:\Logs\TaskMonitor.txt" -Append
}

[bookmark: _Toc212630871]11.6 Example 5: Secure Credential-Based Remote Command
Purpose
Runs a remote command using stored credentials.
Key Concepts
· Secure strings
· Credential objects
· Remoting
Script
PowerShell
$securePassword = Get-Content "C:\Secure\password.txt" | ConvertTo-SecureString
$cred = New-Object System.Management.Automation.PSCredential ("adminuser", $securePassword)

Invoke-Command -ComputerName "Server01" -Credential $cred -ScriptBlock {
Get-Service | Where-Object {$_.Status -eq "Running"}
}

[bookmark: _Toc212630872]11.7 Example 6: Log File Analyzer
Purpose
Scans log files for error entries and summarizes them.
Key Concepts
· Text parsing
· Filtering
· Grouping
Script
PowerShell
$errors = Select-String -Path "C:\Logs\App.log" -Pattern "ERROR"
$summary = $errors | Group-Object Line | Sort-Object Count -Descending
$summary | Format-Table Name, Count

[bookmark: _Toc212630873]11.8 Example 7: Disk Space Alert System
Purpose
Checks disk space and sends an alert if below threshold.
Key Concepts
· Conditional logic
· Email notification
· System monitoring
Script
PowerShell
$drives = Get-PSDrive -PSProvider FileSystem
foreach ($drive in $drives) {
if ($drive.Free -lt 1GB) {
Send-MailMessage -To "admin@company.com" -From "monitor@company.com" `
-Subject "Low Disk Space Alert" -Body "Drive $($drive.Name) is low on space." `
-SmtpServer "smtp.company.com"
}
}

[bookmark: _Toc212630874]11.9 Summary
These real-world examples demonstrate how PowerShell can be used to automate tasks, generate reports, monitor systems, and interact securely with external services. Each script is modular, efficient, and built using best practices. By adapting these examples to your environment, you can accelerate development and improve operational reliability.

[bookmark: _Toc212630875]Chapter 12: Q&A and Troubleshooting

[bookmark: _Toc212630876]12.1 Introduction
Even well-written PowerShell scripts can encounter unexpected issues due to environment differences, user input, permissions, or external dependencies. This chapter provides a curated list of frequently asked questions (FAQs), common errors, and troubleshooting strategies to help you debug and resolve problems efficiently.

[bookmark: _Toc212630877]12.2 Frequently Asked Questions (FAQs)
Q1: Why won’t my script run?
A: Check your execution policy:
PowerShell
Get-ExecutionPolicy

If it’s Restricted, change it:
PowerShell
Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

Q2: How do I pass parameters to a script?
A: Use the param() block at the top of your script:
PowerShell
param([string]$Name)

Run the script like this:
PowerShell
.\MyScript.ps1 -Name "Randy"

Q3: How do I securely store credentials?
A: Use ConvertTo-SecureString and Export-Csv or encrypted files. See Chapter 9 for full examples.

Q4: Why is my COM Excel script hanging or not closing Excel?
A: You must release COM objects:
PowerShell
[System.Runtime.Interopservices.Marshal]::ReleaseComObject($Excel)
[GC]::Collect()
[GC]::WaitForPendingFinalizers()

Q5: How do I debug a script interactively?
A: Use:
PowerShell
Set-PSDebug -Trace 1

Show more lines
Or use breakpoints in PowerShell ISE or Visual Studio Code.

[bookmark: _Toc212630878]12.3 Common Errors and Fixes
Error: “Access Denied”
Cause: Insufficient permissions
Fix: Run PowerShell as Administrator or check ACLs.

Error: “Cannot index into a null array”
Cause: Variable is null or empty
Fix: Validate input:
PowerShell
if ($array -and $array.Count -gt 0) { ... }

Error: “The term ‘xyz’ is not recognized…”
Cause: Cmdlet or function not found
Fix: Import the required module:
PowerShell
Import-Module ModuleName

Error: COM object not released
Cause: Excel or Word remains open in background
Fix: Always release COM objects and call garbage collection.

Error: “Cannot convert value to type System.Int32”
Cause: Type mismatch
Fix: Use explicit casting:
PowerShell
[int]$value = "123"

[bookmark: _Toc212630879]12.4 Troubleshooting Techniques
Use Verbose and Debug Output
PowerShell
Write-Verbose "Starting process..." -Verbose
Write-Debug "Variable value: $var"

Log to File
PowerShell
"[$(Get-Date)] Starting script..." | Out-File "C:\Logs\ScriptLog.txt" -Append

Use Try/Catch for Error Isolation
PowerShell
try {
Get-Item "C:\MissingFile.txt"
} catch {
Write-Host "Error: $($_.Exception.Message)"
}

[bookmark: _Toc212630880]12.5 Diagnostic Tools
· Get-EventLog – View system/application logs
· Get-Process – Monitor script resource usage
· Measure-Command – Benchmark performance
· Get-Module – Check loaded modules
· Get-Command – Verify cmdlet availability

[bookmark: _Toc212630881]12.6 Real-World Troubleshooting Scenarios
Scenario: Excel COM script fails silently
Diagnosis:
· Excel not installed
· File path invalid
· COM object not released
Fix:
· Validate file path
· Wrap COM calls in try/catch
· Release objects properly

Scenario: Script works in ISE but fails in console
Diagnosis:
· Execution policy
· Profile differences
· Module availability
Fix:
· Check execution policy
· Compare $PROFILE paths
· Explicitly import modules

Scenario: Scheduled task runs but script fails
Diagnosis:
· Environment variables missing
· Script path incorrect
· Permissions issue
Fix:
· Use full paths
· Log output to file
· Run task with highest privileges

[bookmark: _Toc212630882]12.7 Summary
Troubleshooting is a vital skill for PowerShell scripters. By understanding common errors, using diagnostic tools, and applying structured debugging techniques, you can resolve issues quickly and build more reliable scripts. This chapter serves as a reference for resolving problems and improving script resilience.

[bookmark: _Toc212630883]Chapter 13: Booklet Wrap-Up and Final Thoughts

[bookmark: _Toc212630884]13.1 Introduction
This final chapter summarizes the key concepts, techniques, and best practices covered throughout the booklet. Whether you're a beginner or an experienced scripter, this wrap-up reinforces the foundational and advanced skills needed to write efficient, secure, and scalable PowerShell scripts. It also provides guidance on next steps, additional resources, and how to continue growing your PowerShell expertise.

[bookmark: _Toc212630885]13.2 Recap of Key Concepts
PowerShell Fundamentals
· Object-oriented scripting language built on .NET
· Cmdlets follow a Verb-Noun naming convention
· Pipeline enables efficient data processing
Scripting Techniques
· Use of param() blocks for input
· Modular design with functions
· Secure credential handling
· COM automation for Excel and other applications
Logic and Flow Control
· Conditional statements (if, switch)
· Looping constructs (for, foreach, while)
· Error handling with try/catch/finally
Data Manipulation
· Working with arrays, hash tables, and custom objects
· Import/export of CSV, JSON, XML
· Filtering, sorting, and formatting output
Security and Performance
· Execution policies and script signing
· Secure credential storage and usage
· Performance profiling and optimization
· Cost management in cloud automation

[bookmark: _Toc212630886]13.3 Best Practices Summary
· Comment generously: Use .SYNOPSIS and inline comments for clarity
· Validate input: Use [Validate*] attributes and error handling
· Avoid hardcoding: Use parameters and configuration files
· Release resources: Especially COM objects and file handles
· Log actions: Maintain audit trails for critical scripts
· Modularize code: Break scripts into reusable functions
· Test thoroughly: Use test environments before production deployment

[bookmark: _Toc212630887]13.4 Suggested Next Steps
Expand Your Toolkit
· Learn PowerShell modules like ImportExcel, PSReadLine, Pester, and Az
· Explore PowerShell 7+ features like ForEach-Object -Parallel
Integrate with Other Technologies
· Automate cloud platforms (Azure, AWS, Google Cloud)
· Interface with REST APIs using Invoke-RestMethod
· Build GUIs with Windows Forms or WPF
Advance Your Skills
· Study Desired State Configuration (DSC)
· Learn PowerShell classes and object-oriented design
· Explore PowerShell for DevOps and CI/CD pipelines

[bookmark: _Toc212630888]13.5 Resources for Continued Learning
· Microsoft Docs: https://learn.microsoft.com/powershell
· PowerShell Gallery: https://www.powershellgallery.com
· GitHub Repositories: Explore open-source PowerShell projects
· Books:
· Learn Windows PowerShell in a Month of Lunches by Don Jones
· PowerShell in Depth by Don Jones, Jeffrey Hicks, and Richard Siddaway

[bookmark: _Toc212630889]13.6 Final Thoughts
PowerShell is more than just a scripting language—it’s a powerful automation framework that can transform how IT professionals manage systems, data, and infrastructure. By mastering the techniques in this booklet, you’ve built a strong foundation for solving real-world problems with precision, efficiency, and confidence.
Whether you're generating Excel reports, managing Active Directory, or orchestrating cloud resources, PowerShell empowers you to automate intelligently and securely. Keep experimenting, keep learning, and keep scripting.

[bookmark: _Toc212630890]Appendix A: PowerShell Cmdlet Reference

[bookmark: _Toc212630891]General Discovery and Help
· Get-Help – Retrieves help info for cmdlets, scripts, or functions
· Get-Command – Lists all available cmdlets, functions, aliases, and scripts
· Show-Command – Displays a GUI for cmdlet parameters
· Get-Alias / Set-Alias / Remove-Alias – Manages command aliases
· Get-History / Add-History / Clear-History – Manages session command history

[bookmark: _Toc212630892]Scripting and Execution
· Start-Transcript / Stop-Transcript – Records PowerShell sessions
· Invoke-Expression – Executes a string as a command
· Measure-Command – Measures execution time
· Tee-Object – Sends output to both pipeline and file

[bookmark: _Toc212630893]File and Folder Management
· Get-ChildItem – Lists files and folders
· Get-Location / Set-Location – Gets/sets current directory
· New-Item – Creates files, folders, registry keys
· Remove-Item – Deletes files, folders, registry keys
· Rename-Item – Renames items
· Copy-Item / Move-Item – Copies or moves items
· Get-Content / Set-Content / Add-Content / Clear-Content – Reads/writes file content
· Test-Path – Checks if a path exists
· Join-Path / Split-Path – Combines or splits paths

[bookmark: _Toc212630894]Process and Service Management
· Get-Process / Start-Process / Stop-Process / Wait-Process – Manages processes
· Get-Service / Start-Service / Stop-Service / Restart-Service – Manages services

[bookmark: _Toc212630895]Data Handling and Reporting
· ConvertTo-HTML – Converts objects to HTML
· Export-Csv / Import-Csv – CSV data export/import
· Select-String – Searches text patterns
· Format-Table / Format-List – Formats output
· Measure-Object – Calculates properties (sum, count, etc.)
· Out-GridView – Displays data in interactive grid
· Group-Object – Groups objects by property
· Write-Progress – Displays progress bar

[bookmark: _Toc212630896]Module Management
· Get-Module – Lists available modules
· Import-Module – Loads a module
· Install-Module / Update-Module / Uninstall-Module – Manages modules
· Add-PSSnapin – Adds snap-ins (legacy support)

[bookmark: _Toc212630897]Registry Management
· Get-Item – Retrieves registry keys
· New-ItemProperty / Set-ItemProperty / Remove-ItemProperty – Manages registry properties

[bookmark: _Toc212630898]System Information
· Get-Date – Displays current date/time
· Get-ComputerInfo – Displays system details
· Restart-Computer / Shutdown-Computer – Restarts or shuts down system
· Get-Clipboard / Set-Clipboard – Interacts with clipboard

[bookmark: _Toc212630899]User and Session Management
· Enter-PSSession / Exit-PSSession – Starts/ends remote sessions
· Connect-PSSession / Disconnect-PSSession – Manages remote session state

[bookmark: _Toc212630900]Security and Permissions
· Set-ExecutionPolicy – Configures script execution policy
· Get-Credential – Prompts for secure credentials
· Get-Acl / Set-Acl – Manages access control lists

[bookmark: _Toc212630901]Automation and Scheduling
· Register-ScheduledTask / Unregister-ScheduledTask – Manages scheduled tasks
· Start-ScheduledTask / Stop-ScheduledTask – Controls task execution

[bookmark: _Toc212630902]Debugging and Miscellaneous
· Write-Host / Write-Output – Displays output
· ForEach-Object / Where-Object / Select-Object / Sort-Object – Pipeline processing
· Out-File – Sends output to a file
· Compare-Object – Compares two sets of objects

2 | Page

image1.png
LEARNING
POWERSHELL

